'50s progression - definition. What is '50s progression
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف


'50s progression         
The 50s progression (also known as the "Heart and Soul" chords, the "Stand by Me" changes, the doo-wop progression and the "ice cream changes") is a chord progression and turnaround used in Western popular music. The progression, represented in Roman numeral analysis, is: I–vi–IV–V.
Generalized arithmetic progression         
A SET OF INTEGERS CONSTRUCTED AS AN ARITHMETIC PROGRESSION
Multiple arithmetic progression; Generalised arithmetic progression; Linear set; Semilinear set; Linear Set; Semilinear Set; Multidimensional arithmetic progression; Multi-dimensional arithmetic progression
In mathematics, a generalized arithmetic progression (or multiple arithmetic progression) is a generalization of an arithmetic progression equipped with multiple common differences – whereas an arithmetic progression is generated by a single common difference, a generalized arithmetic progression can be generated by multiple common differences. For example, the sequence 17, 20, 22, 23, 25, 26, 27, 28, 29, \dots is not an arithmetic progression, but is instead generated by starting with 17 and adding either 3 or 5, thus allowing multiple common differences to generate it.
Primes in arithmetic progression         
In number theory, primes in arithmetic progression are any sequence of at least three prime numbers that are consecutive terms in an arithmetic progression. An example is the sequence of primes (3, 7, 11), which is given by a_n = 3 + 4n for 0 \le n \le 2.